Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Predictions Using Prophet | Stock Prices Prediction Project
Stock Prices Prediction Project
course content

Contenu du cours

Stock Prices Prediction Project

book
Predictions Using Prophet

Predictions are then made on a DataFrame with a column "ds" containing the dates for which a prediction is to be made. You can get a suitable DataFrame that extends a specified number of days into the future using the helper method Prophet.make_future_dataframe(). By default, it will also include the dates from the history, so we will see the model fit as well.

The predict() method will assign each row in the future a predicted value which it names "yhat". If you pass in historical dates, it will provide an in-sample fit. The forecast object here is a new DataFrame that includes a column "yhat" with the forecast and columns for components and uncertainty intervals.

Tâche

Swipe to start coding

  1. Initialize a DF (with 365 days) where to store predictions using the make_future_dataframe() method;
  2. Make the predictions;
  3. Print the last five rows of this dataset.

Solution

Mark tasks as Completed
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 9
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt