Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Smoothing | Image Processing
Fundamentals of Image Manipulation with Python
course content

Kursinnehåll

Fundamentals of Image Manipulation with Python

book
Smoothing

In OpenCV, Gaussian Blur is a smoothing filter used to reduce noise and detail in an image. This filter is based on the Gaussian function, which is bell-shaped and diminishes as the distance from the center increases. The cv2.GaussianBlur() function applies this type of blur to an image.

The function requires three parameters:

  • the image to be blurred;

  • the kernel size (specified as a tuple of width and height);

  • the standard deviation in the x and y directions.

If the standard deviation is set to zero, it is calculated from the kernel size. The kernel size determines the area used to calculate the blur, while the standard deviation controls the amount of blur.

Uppgift

Swipe to start coding

  1. Apply Gaussian blue to the image "image1.jpg".

Lösning

Mark tasks as Completed
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 7

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

course content

Kursinnehåll

Fundamentals of Image Manipulation with Python

book
Smoothing

In OpenCV, Gaussian Blur is a smoothing filter used to reduce noise and detail in an image. This filter is based on the Gaussian function, which is bell-shaped and diminishes as the distance from the center increases. The cv2.GaussianBlur() function applies this type of blur to an image.

The function requires three parameters:

  • the image to be blurred;

  • the kernel size (specified as a tuple of width and height);

  • the standard deviation in the x and y directions.

If the standard deviation is set to zero, it is calculated from the kernel size. The kernel size determines the area used to calculate the blur, while the standard deviation controls the amount of blur.

Uppgift

Swipe to start coding

  1. Apply Gaussian blue to the image "image1.jpg".

Lösning

Mark tasks as Completed
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 7
Vi beklagar att något gick fel. Vad hände?
some-alt