Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Line Plots | Gaining Insights with Data Visualization
Gaining Insights with Data Visualization
course content

Зміст курсу

Gaining Insights with Data Visualization

bookLine Plots

A line plot is a graphical representation of data that displays information along a number line. It consists of a series of points plotted on a graph, where the x-axis typically represents the independent variable, and the y-axis represents the dependent variable.

Line plots are particularly useful for displaying trends in data over time or across different categories. They are often used to visualize stock prices or weather patterns, and to compare the values of different variables, like sales volumes across various products or the performance of different sports teams. These trends or patterns can aid in making predictions about future values.

In Python, line plots can be created using the plot() function from the matplotlib.pyplot module.

Завдання
test

Swipe to show code editor

  1. Import the pyplot module of the matplotlib library with the plt alias.
  2. Generate a random array of 1000 elements (1000 x 1 array) called values using numpy.
  3. Create a single line plot based on the values array.
  4. Generate a second random array of 1000 elements called values1 using numpy.
  5. Create a second line plot based on the values1 array.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

A line plot is a graphical representation of data that displays information along a number line. It consists of a series of points plotted on a graph, where the x-axis typically represents the independent variable, and the y-axis represents the dependent variable.

Line plots are particularly useful for displaying trends in data over time or across different categories. They are often used to visualize stock prices or weather patterns, and to compare the values of different variables, like sales volumes across various products or the performance of different sports teams. These trends or patterns can aid in making predictions about future values.

In Python, line plots can be created using the plot() function from the matplotlib.pyplot module.

Завдання
test

Swipe to show code editor

  1. Import the pyplot module of the matplotlib library with the plt alias.
  2. Generate a random array of 1000 elements (1000 x 1 array) called values using numpy.
  3. Create a single line plot based on the values array.
  4. Generate a second random array of 1000 elements called values1 using numpy.
  5. Create a second line plot based on the values1 array.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 3
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt