Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Resample | Time Series Essentials
Time Series Essentials
course content

Зміст курсу

Time Series Essentials

bookResample

In Python, the resample() method is used to resample time series data to a different frequency. The method is typically used on a pandas DataFrame or Series with a time-based index, and it is available through the resample() attribute of the DataFrame or Series.

The basic syntax for the resample() method is as follows:

Where rule identigies the resampling rule, which defines the new frequency of the data. This can be a string or pandas offset, such as 'D' for daily, 'H' for hourly, 'M' for monthly, etc.

Завдання
test

Swipe to show code editor

  1. Resample to monthly frequency and get the mean of it using the .mean() method.
  2. Print the variable.

Congratulations on completing your time series project! Your hard work and dedication have paid off. I am impressed with the results and am sure that your efforts will be valuable to the team. Keep up the great work!

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

In Python, the resample() method is used to resample time series data to a different frequency. The method is typically used on a pandas DataFrame or Series with a time-based index, and it is available through the resample() attribute of the DataFrame or Series.

The basic syntax for the resample() method is as follows:

Where rule identigies the resampling rule, which defines the new frequency of the data. This can be a string or pandas offset, such as 'D' for daily, 'H' for hourly, 'M' for monthly, etc.

Завдання
test

Swipe to show code editor

  1. Resample to monthly frequency and get the mean of it using the .mean() method.
  2. Print the variable.

Congratulations on completing your time series project! Your hard work and dedication have paid off. I am impressed with the results and am sure that your efforts will be valuable to the team. Keep up the great work!

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 8
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt