Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Introduction | Time Series
Time Series Essentials
course content

Зміст курсу

Time Series Essentials

book
Introduction

A time series is a sequence of data points collected at regular intervals, ranging from simple scalar values like temperature or stock prices to complex multi-dimensional data such as sensor readings or images. It's crucial in various fields like finance, economics, and science.

In Python, time series data is often handled with pandas DataFrame or Series objects, offering versatile structures for manipulation and analysis. Pandas provides a plethora of functions and methods for effective data manipulation and visualization.

Time series data is vital for tracking variable trends over time and predicting future values based on historical data. It's used for forecasting, anomaly detection, trend and seasonality analysis, and noise reduction.

Python libraries like statsmodels, prophet, and scikit-learn offer tools for time series analysis, including statistical models, visualization, and machine learning algorithms.

In summary, time series data is important in many fields and python provides powerful tools for working with this type of data, by using libraries like pandas, statsmodels, prophet and scikit-learn.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 1
We're sorry to hear that something went wrong. What happened?
some-alt