Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Heat Maps | Gaining Insights with Data Visualization
Gaining Insights with Data Visualization
course content

Зміст курсу

Gaining Insights with Data Visualization

bookHeat Maps

Heatmaps are graphical representations of data where the individual values contained in a matrix are represented as colors. The color scale used in the heatmap indicates the magnitude of the values at each position in the matrix.

Heatmaps are often used to visualize patterns and correlations in data. For example, a heatmap could illustrate the relationship between two variables, such as temperature and humidity in a given location over time. It might show that as the temperature increases, the humidity also tends to increase, indicating a strong correlation between the two variables.

Additionally, heatmaps can be tailored with various color scales to enhance visual clarity and highlight specific trends more effectively.

Завдання
test

Swipe to show code editor

  1. Create a DataFrame with the following columns: 'a', 'b', 'c', 'd', 'e'.
  2. Use the appropriate function to create a heatmap.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Heatmaps are graphical representations of data where the individual values contained in a matrix are represented as colors. The color scale used in the heatmap indicates the magnitude of the values at each position in the matrix.

Heatmaps are often used to visualize patterns and correlations in data. For example, a heatmap could illustrate the relationship between two variables, such as temperature and humidity in a given location over time. It might show that as the temperature increases, the humidity also tends to increase, indicating a strong correlation between the two variables.

Additionally, heatmaps can be tailored with various color scales to enhance visual clarity and highlight specific trends more effectively.

Завдання
test

Swipe to show code editor

  1. Create a DataFrame with the following columns: 'a', 'b', 'c', 'd', 'e'.
  2. Use the appropriate function to create a heatmap.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 9
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt