Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Scatter Plots | Gaining Insights with Data Visualization
Gaining Insights with Data Visualization
course content

Зміст курсу

Gaining Insights with Data Visualization

bookScatter Plots

A scatter plot is a type of graph that used to display values for typically two variables for a set of data. Each value in the dataset is represented by a dot or mark on the plot, positioned according to its values for the variables.

Scatter plots are particularly useful for showing relationships between two continuous variables. They can be used to visualize patterns and trends in data and to identify correlations between variables.

For instance, a scatter plot could illustrate the relationship between a person's height and weight or track changes in a company's stock price over time. Additionally, enhancements like color coding or different marker styles can further elucidate the relationships among multiple variables or categories.

Завдання
test

Swipe to show code editor

  1. Import the pandas library with the pd alias.
  2. Initialize a pandas DataFrame with 100 records, setting the 'x_values' column to range from 1 to 101 exclusive.
  3. Create a scatter plot with the 'x_values' column on the x-axis and the 'y_values' column on the y-axis.
  4. Set the title of the graph to 'Scatter Plot'.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

A scatter plot is a type of graph that used to display values for typically two variables for a set of data. Each value in the dataset is represented by a dot or mark on the plot, positioned according to its values for the variables.

Scatter plots are particularly useful for showing relationships between two continuous variables. They can be used to visualize patterns and trends in data and to identify correlations between variables.

For instance, a scatter plot could illustrate the relationship between a person's height and weight or track changes in a company's stock price over time. Additionally, enhancements like color coding or different marker styles can further elucidate the relationships among multiple variables or categories.

Завдання
test

Swipe to show code editor

  1. Import the pandas library with the pd alias.
  2. Initialize a pandas DataFrame with 100 records, setting the 'x_values' column to range from 1 to 101 exclusive.
  3. Create a scatter plot with the 'x_values' column on the x-axis and the 'y_values' column on the y-axis.
  4. Set the title of the graph to 'Scatter Plot'.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 6
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt