Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Advanced Aggregation [1/2] | Aggregating and Visualizing Data
Data Manipulation using pandas
course content

Зміст курсу

Data Manipulation using pandas

Data Manipulation using pandas

1. Preprocessing Data: Part I
2. Preprocessing Data: Part II
3. Grouping Data
4. Aggregating and Visualizing Data
5. Joining Data

bookAdvanced Aggregation [1/2]

Sometimes one aggregate function is not enought to make complete conclusions. For instance, we may need to get not only minimal, but also maximal value per group. Can pandas handle it? Surely, it can!

If you want to apply more than one aggregate function to each group, use the .agg() method. Pass a list of function names (as strings!) you want to apply to each group as the parameter. For instance, we can get the minimal and maximal price for each value of the 'roomh' column (number of rooms).

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data4.csv') # Minimal and maximal prices for each dwelling type print(df.groupby('roomh')['valueh'].agg(['min', 'max']))
copy

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 1
We're sorry to hear that something went wrong. What happened?
some-alt