Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Advanced Aggregation [1/2] | Aggregating and Visualizing Data
Data Manipulation using pandas

bookAdvanced Aggregation [1/2]

Sometimes one aggregate function is not enought to make complete conclusions. For instance, we may need to get not only minimal, but also maximal value per group. Can pandas handle it? Surely, it can!

If you want to apply more than one aggregate function to each group, use the .agg() method. Pass a list of function names (as strings!) you want to apply to each group as the parameter. For instance, we can get the minimal and maximal price for each value of the 'roomh' column (number of rooms).

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data4.csv') # Minimal and maximal prices for each dwelling type print(df.groupby('roomh')['valueh'].agg(['min', 'max']))
copy

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 1

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Awesome!

Completion rate improved to 2.56

bookAdvanced Aggregation [1/2]

Свайпніть щоб показати меню

Sometimes one aggregate function is not enought to make complete conclusions. For instance, we may need to get not only minimal, but also maximal value per group. Can pandas handle it? Surely, it can!

If you want to apply more than one aggregate function to each group, use the .agg() method. Pass a list of function names (as strings!) you want to apply to each group as the parameter. For instance, we can get the minimal and maximal price for each value of the 'roomh' column (number of rooms).

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data4.csv') # Minimal and maximal prices for each dwelling type print(df.groupby('roomh')['valueh'].agg(['min', 'max']))
copy

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 1
some-alt