Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Generate a Word Cloud | Tweet Sentiment Analysis
Tweet Sentiment Analysis
course content

Зміст курсу

Tweet Sentiment Analysis

bookGenerate a Word Cloud

A word cloud (also known as a tag cloud) is a visual representation of the most frequently used words in a piece of text. The size of each word in the cloud corresponds to its frequency of use, with the most frequently used words appearing larger and more prominent than less frequently used words.

Word clouds are often used to quickly and easily identify the most important or relevant words in a piece of text, such as a document, a webpage, or a set of social media posts. They can be used in a variety of applications, such as text mining, content analysis, and social media monitoring.

Завдання
test

Swipe to show code editor

  1. Import WordCloud, STOPWORDS, ImageColorGenerator from wordcloud.
  2. Select only the "neutral" tweets (the "sentiment" column).
  3. Create a plot using the plot_wordcloud() function.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

A word cloud (also known as a tag cloud) is a visual representation of the most frequently used words in a piece of text. The size of each word in the cloud corresponds to its frequency of use, with the most frequently used words appearing larger and more prominent than less frequently used words.

Word clouds are often used to quickly and easily identify the most important or relevant words in a piece of text, such as a document, a webpage, or a set of social media posts. They can be used in a variety of applications, such as text mining, content analysis, and social media monitoring.

Завдання
test

Swipe to show code editor

  1. Import WordCloud, STOPWORDS, ImageColorGenerator from wordcloud.
  2. Select only the "neutral" tweets (the "sentiment" column).
  3. Create a plot using the plot_wordcloud() function.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 9
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt