Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Perform K-means Clustering | Basic Clustering Algorithms
Cluster Analysis

Stryg for at vise menuen

book
Perform K-means Clustering

Opgave

Swipe to start coding

Let's check the efficiency of the algorithm on different types of clusters. Now we will use the three built-in datasets of the sklearn library and try to use the K-means algorithm to cluster the corresponding points. We will provide visualizations and try to estimate the quality of clustering using these visualizations.

Your task is to use the K-means clustering algorithm and to solve 3 different clustering problems. Compare the results and make conclusions about clustering quality. You have to:

  1. Use KMeans class from cluster module for import.
  2. Use KMeans class to instantiate a class object
  3. Use.fit()method to train model.
  4. Use .labels_attribute to extract fitted clusters.

Once you've completed this task, click the button below the code to check your solution.

Løsning

Note

In visualizations, it is necessary to look not at the color of clusters, but at the relative position of points in real and predicted clusters (Python can color the same clusters with different colors in different pictures due to implementation features)

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 2
Vi beklager, at noget gik galt. Hvad skete der?

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
Perform K-means Clustering

Opgave

Swipe to start coding

Let's check the efficiency of the algorithm on different types of clusters. Now we will use the three built-in datasets of the sklearn library and try to use the K-means algorithm to cluster the corresponding points. We will provide visualizations and try to estimate the quality of clustering using these visualizations.

Your task is to use the K-means clustering algorithm and to solve 3 different clustering problems. Compare the results and make conclusions about clustering quality. You have to:

  1. Use KMeans class from cluster module for import.
  2. Use KMeans class to instantiate a class object
  3. Use.fit()method to train model.
  4. Use .labels_attribute to extract fitted clusters.

Once you've completed this task, click the button below the code to check your solution.

Løsning

Note

In visualizations, it is necessary to look not at the color of clusters, but at the relative position of points in real and predicted clusters (Python can color the same clusters with different colors in different pictures due to implementation features)

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 2
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt