Métricas
Así pues, hemos comparado por pares las columnas de ambos conjuntos de datos. Recordemos la sección 1. Necesitamos una métrica, o mejor aún, varias métricas. Unas buenas métricas para nuestros conjuntos de datos serían:
Comparemos la primera métrica, Tasa de conversión, para ambos conjuntos de datos. Trazaremos histogramas:
1234567891011121314151617181920212223242526272829# Import libraries import matplotlib.pyplot as plt import pandas as pd import seaborn as sns # Read .csv files df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') # Define metric df_test['Conversion'] = df_test['Purchase'] / df_test['Click'] df_control['Conversion'] = df_control['Purchase'] / df_control['Click'] # Ploting hists sns.histplot(df_control['Conversion'], color="#1e2635", label="Conversion of Control Group") sns.histplot(df_test['Conversion'], color="#ff8a00", label="Conversion of Test Group") # Add mean line plt.axvline(df_control['Conversion'].mean(), color="#1e2635", linestyle='dashed', linewidth=1, label='Mean Control Group') plt.axvline(df_test['Conversion'].mean(), color="#ff8a00", linestyle='dashed', linewidth=1, label='Mean Test Group') # Sign the axes plt.xlabel('Conversion') plt.ylabel('Frequency') plt.legend() plt.title('Histogram of Conversion') # Show the results plt.show()
Bueno, no parece seguir una distribución normal. Vamos a trazar un gráfico de caja:
1234567891011121314151617181920212223242526272829#Import libraries import matplotlib.pyplot as plt import pandas as pd import seaborn as sns #Read .csv files df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') #Define metric df_test['Conversion'] = df_test['Purchase'] / df_test['Click'] df_control['Conversion'] = df_control['Purchase'] / df_control['Click'] #We add to the dataframes columns-labels, which mean belonging to either the control or the test group df_control['group'] = 'Contol group' df_test['group'] = 'Test group' #Concat the dataframes and plotting boxplots df_combined = pd.concat([df_control, df_test]) sns.boxplot(data=df_combined, x='group', y='Conversion', palette=['#1e2635', '#ff8a00'], medianprops={'color': 'red'}) #Sign the axis plt.xlabel('') plt.ylabel('Conversion') plt.title('Comparison of Conversion') #Show the results plt.show()
Las distribuciones están muy sesgadas, lo que sugiere que es poco probable que sean normales. Confirmémoslo realizando la prueba de Shapiro-Wilk:
12345678910111213141516171819202122232425262728# Import libraries import pandas as pd from scipy.stats import shapiro # Read .csv files df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') # Define metric df_test['Conversion'] = df_test['Purchase'] / df_test['Click'] df_control['Conversion'] = df_control['Purchase'] / df_control['Click'] # Testing normality stat_control, p_control = shapiro(df_control['Conversion']) print("Control group: ") print("Stat: %.4f, p-value: %.4f" % (stat_control, p_control)) if p_control > 0.05: print('Control group is likely to normal distribution') else: print('Control group is NOT likely to normal distribution') stat_control, p_control = shapiro(df_test['Conversion']) print("Test group: ") print("Stat: %.4f, p-value: %.4f" % (stat_control, p_control)) if p_control > 0.05: print('Control group is likely to normal distribution') else: print('Control group is NOT likely to normal distribution')
La prueba Shapiro-Wilk no aportó pruebas estadísticas suficientes de la normalidad de las distribuciones de las métricas de Conversión. Sin embargo, esto no es un obstáculo. Incluso en tal situación, podemos recurrir a la prueba no paramétrica U de Mann-Whitney, también conocida como prueba U.
¡Gracias por tus comentarios!
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Awesome!
Completion rate improved to 3.23
Métricas
Desliza para mostrar el menú
Así pues, hemos comparado por pares las columnas de ambos conjuntos de datos. Recordemos la sección 1. Necesitamos una métrica, o mejor aún, varias métricas. Unas buenas métricas para nuestros conjuntos de datos serían:
Comparemos la primera métrica, Tasa de conversión, para ambos conjuntos de datos. Trazaremos histogramas:
1234567891011121314151617181920212223242526272829# Import libraries import matplotlib.pyplot as plt import pandas as pd import seaborn as sns # Read .csv files df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') # Define metric df_test['Conversion'] = df_test['Purchase'] / df_test['Click'] df_control['Conversion'] = df_control['Purchase'] / df_control['Click'] # Ploting hists sns.histplot(df_control['Conversion'], color="#1e2635", label="Conversion of Control Group") sns.histplot(df_test['Conversion'], color="#ff8a00", label="Conversion of Test Group") # Add mean line plt.axvline(df_control['Conversion'].mean(), color="#1e2635", linestyle='dashed', linewidth=1, label='Mean Control Group') plt.axvline(df_test['Conversion'].mean(), color="#ff8a00", linestyle='dashed', linewidth=1, label='Mean Test Group') # Sign the axes plt.xlabel('Conversion') plt.ylabel('Frequency') plt.legend() plt.title('Histogram of Conversion') # Show the results plt.show()
Bueno, no parece seguir una distribución normal. Vamos a trazar un gráfico de caja:
1234567891011121314151617181920212223242526272829#Import libraries import matplotlib.pyplot as plt import pandas as pd import seaborn as sns #Read .csv files df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') #Define metric df_test['Conversion'] = df_test['Purchase'] / df_test['Click'] df_control['Conversion'] = df_control['Purchase'] / df_control['Click'] #We add to the dataframes columns-labels, which mean belonging to either the control or the test group df_control['group'] = 'Contol group' df_test['group'] = 'Test group' #Concat the dataframes and plotting boxplots df_combined = pd.concat([df_control, df_test]) sns.boxplot(data=df_combined, x='group', y='Conversion', palette=['#1e2635', '#ff8a00'], medianprops={'color': 'red'}) #Sign the axis plt.xlabel('') plt.ylabel('Conversion') plt.title('Comparison of Conversion') #Show the results plt.show()
Las distribuciones están muy sesgadas, lo que sugiere que es poco probable que sean normales. Confirmémoslo realizando la prueba de Shapiro-Wilk:
12345678910111213141516171819202122232425262728# Import libraries import pandas as pd from scipy.stats import shapiro # Read .csv files df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') # Define metric df_test['Conversion'] = df_test['Purchase'] / df_test['Click'] df_control['Conversion'] = df_control['Purchase'] / df_control['Click'] # Testing normality stat_control, p_control = shapiro(df_control['Conversion']) print("Control group: ") print("Stat: %.4f, p-value: %.4f" % (stat_control, p_control)) if p_control > 0.05: print('Control group is likely to normal distribution') else: print('Control group is NOT likely to normal distribution') stat_control, p_control = shapiro(df_test['Conversion']) print("Test group: ") print("Stat: %.4f, p-value: %.4f" % (stat_control, p_control)) if p_control > 0.05: print('Control group is likely to normal distribution') else: print('Control group is NOT likely to normal distribution')
La prueba Shapiro-Wilk no aportó pruebas estadísticas suficientes de la normalidad de las distribuciones de las métricas de Conversión. Sin embargo, esto no es un obstáculo. Incluso en tal situación, podemos recurrir a la prueba no paramétrica U de Mann-Whitney, también conocida como prueba U.
¡Gracias por tus comentarios!