Desafío: Evaluación del Modelo
En este desafío, se te proporciona el conocido conjunto de datos de viviendas, pero esta vez solo con la característica 'age'
.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
A continuación, crearemos un diagrama de dispersión para estos datos:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
Ajustar una línea recta a estos datos puede no ser la mejor opción. El precio aumenta tanto para casas nuevas como para casas muy antiguas. Ajustar una parábola parece una mejor elección. Eso es lo que harás en este desafío.
Pero antes de comenzar, recuerda la clase PolynomialFeatures
.
El método fit_transform(X)
requiere que X
sea un arreglo 2-D (o un DataFrame).
Usar X = df[['column_name']]
hará que tu X
sea adecuado para fit_transform()
.
Y si tienes un arreglo 1-D, utiliza .reshape(-1, 1)
para convertirlo en un arreglo 2-D con el mismo contenido.
El objetivo es construir una regresión polinómica de grado 2 utilizando PolynomialFeatures
y OLS
.
Swipe to start coding
- Asignar la variable
X
a un DataFrame que contenga la columna'age'
. - Crear una matriz
X_tilde
utilizando la clasePolynomialFeatures
. - Construir y entrenar un modelo de Regresión Polinómica.
- Redimensionar
X_new
para que sea un arreglo 2-D. - Preprocesar
X_new
de la misma manera queX
. - Imprimir los parámetros del modelo.
Solución
¡Gracias por tus comentarios!
single
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Awesome!
Completion rate improved to 5.26
Desafío: Evaluación del Modelo
Desliza para mostrar el menú
En este desafío, se te proporciona el conocido conjunto de datos de viviendas, pero esta vez solo con la característica 'age'
.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
A continuación, crearemos un diagrama de dispersión para estos datos:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
Ajustar una línea recta a estos datos puede no ser la mejor opción. El precio aumenta tanto para casas nuevas como para casas muy antiguas. Ajustar una parábola parece una mejor elección. Eso es lo que harás en este desafío.
Pero antes de comenzar, recuerda la clase PolynomialFeatures
.
El método fit_transform(X)
requiere que X
sea un arreglo 2-D (o un DataFrame).
Usar X = df[['column_name']]
hará que tu X
sea adecuado para fit_transform()
.
Y si tienes un arreglo 1-D, utiliza .reshape(-1, 1)
para convertirlo en un arreglo 2-D con el mismo contenido.
El objetivo es construir una regresión polinómica de grado 2 utilizando PolynomialFeatures
y OLS
.
Swipe to start coding
- Asignar la variable
X
a un DataFrame que contenga la columna'age'
. - Crear una matriz
X_tilde
utilizando la clasePolynomialFeatures
. - Construir y entrenar un modelo de Regresión Polinómica.
- Redimensionar
X_new
para que sea un arreglo 2-D. - Preprocesar
X_new
de la misma manera queX
. - Imprimir los parámetros del modelo.
Solución
¡Gracias por tus comentarios!
Awesome!
Completion rate improved to 5.26single