iloc Basics
You can also access rows in a DataFrame by their index. There are multiple ways to do this:
.iloc
- is used to access rows by their numerical index, starting from 0;.loc
- is used to access rows by their string label.
In this course, we will focus exclusively on using the .iloc
attribute.
12345import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) print(countries)
The DataFrame has the following structure:
You can notice the first column, which serves as the row index. We'll use these indexes to access specific rows in the DataFrame. The syntax of this attribute is as follows:
df.iloc[index]
We can apply this attribute to access the third and seventh rows in our DataFrame:
12345678import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) # Accessing to the third and seventh rows print(countries.iloc[2]) print(countries.iloc[6])
After running the above code, you'll get rows that correspond to the indexes indicated in the image below:
Thanks for your feedback!
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Can you explain how to access multiple rows at once using `.iloc`?
What happens if I use a negative index with `.iloc`?
Can I use `.iloc` to access both rows and columns at the same time?
Awesome!
Completion rate improved to 3.03
iloc Basics
Swipe to show menu
You can also access rows in a DataFrame by their index. There are multiple ways to do this:
.iloc
- is used to access rows by their numerical index, starting from 0;.loc
- is used to access rows by their string label.
In this course, we will focus exclusively on using the .iloc
attribute.
12345import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) print(countries)
The DataFrame has the following structure:
You can notice the first column, which serves as the row index. We'll use these indexes to access specific rows in the DataFrame. The syntax of this attribute is as follows:
df.iloc[index]
We can apply this attribute to access the third and seventh rows in our DataFrame:
12345678import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) # Accessing to the third and seventh rows print(countries.iloc[2]) print(countries.iloc[6])
After running the above code, you'll get rows that correspond to the indexes indicated in the image below:
Thanks for your feedback!