Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Erstellung Einer Linearen Regression Mit NumPy | Einfache Lineare Regression
Lineare Regression mit Python

bookErstellung Einer Linearen Regression Mit NumPy

Sie wissen bereits, was eine einfache lineare Regression ist und wie man die am besten passende Gerade für die Daten findet. Nun werden alle Schritte zum Aufbau einer linearen Regression für einen realen Datensatz durchlaufen.

Laden von Daten

Wir haben eine Datei, simple_height_data.csv, mit den Daten aus unseren Beispielen. Wir laden die Datei und sehen sie uns an:

123456
import pandas as pd file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv' df = pd.read_csv(file_link) # Read the file print(df.head()) # Print the first 5 instances from a dataset
copy

Das Datenset enthält zwei Spalten: Die erste ist 'Father', das Eingabemerkmal, und die zweite ist 'Height', unsere Zielvariable.

Wir ordnen die Zielwerte der Variable y und die Merkmalswerte der Variable X zu und erstellen ein Streudiagramm.

1234
X = df['Father'] # Assign the feature y = df['Height'] # Assign the target plt.scatter(X,y) # Build scatterplot plt.show()
copy

Parameterermittlung

NumPy bietet eine praktische Funktion, um die Parameter der linearen Regression zu bestimmen.

Lineare Regression ist eine Polynomregression vom Grad 1 (auf Polynomregression gehen wir in späteren Abschnitten ein). Deshalb muss deg=1 gesetzt werden, um die Parameter für die lineare Regression zu erhalten.
Hier ein Beispiel:

123
beta_1, beta_0 = np.polyfit(X, y, 1) # Get the parameters print('beta_0 is', beta_0) print('beta_1 is', beta_1)
copy
Note
Hinweis

Falls Sie mit der Syntax beta_1, beta_0 = np.polyfit(X,y,1) nicht vertraut sind: Dies wird als Unpacking bezeichnet. Wenn ein Iterator (z. B. Liste, NumPy-Array oder pandas Series) zwei Elemente enthält, entspricht

a, b = my_iterator

dem folgenden:

a = my_iterator[0]
b = my_iterator[1]

Da die Rückgabe der Funktion polyfit() ein NumPy-Array mit zwei Werten ist, kann dies so verwendet werden.

Durchführung von Vorhersagen

Nun kann die Linie geplottet und neue Variablen mithilfe der Parameter vorhergesagt werden.

123
plt.scatter(X,y) # Build a scatter plot plt.plot(X, beta_0 + beta_1 * X, color='red') # Plot the line plt.show()
copy

Nachdem die Parameter bestimmt wurden, kann die Gleichung der linearen Regression zur Vorhersage neuer Werte verwendet werden.

123
X_new = np.array([65, 70, 75]) # Feature values of new instances y_pred = beta_0 + beta_1 * X_new # Predict the target print('Predicted y: ', y_pred)
copy

Es ist also ziemlich einfach, die Parameter der linearen Regression zu bestimmen. Einige Bibliotheken können jedoch auch zusätzliche Informationen bereitstellen.

question mark

Die Parameter der einfachen linearen Regression können mit der NumPy-Funktion gefunden werden:

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

bookErstellung Einer Linearen Regression Mit NumPy

Swipe um das Menü anzuzeigen

Sie wissen bereits, was eine einfache lineare Regression ist und wie man die am besten passende Gerade für die Daten findet. Nun werden alle Schritte zum Aufbau einer linearen Regression für einen realen Datensatz durchlaufen.

Laden von Daten

Wir haben eine Datei, simple_height_data.csv, mit den Daten aus unseren Beispielen. Wir laden die Datei und sehen sie uns an:

123456
import pandas as pd file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv' df = pd.read_csv(file_link) # Read the file print(df.head()) # Print the first 5 instances from a dataset
copy

Das Datenset enthält zwei Spalten: Die erste ist 'Father', das Eingabemerkmal, und die zweite ist 'Height', unsere Zielvariable.

Wir ordnen die Zielwerte der Variable y und die Merkmalswerte der Variable X zu und erstellen ein Streudiagramm.

1234
X = df['Father'] # Assign the feature y = df['Height'] # Assign the target plt.scatter(X,y) # Build scatterplot plt.show()
copy

Parameterermittlung

NumPy bietet eine praktische Funktion, um die Parameter der linearen Regression zu bestimmen.

Lineare Regression ist eine Polynomregression vom Grad 1 (auf Polynomregression gehen wir in späteren Abschnitten ein). Deshalb muss deg=1 gesetzt werden, um die Parameter für die lineare Regression zu erhalten.
Hier ein Beispiel:

123
beta_1, beta_0 = np.polyfit(X, y, 1) # Get the parameters print('beta_0 is', beta_0) print('beta_1 is', beta_1)
copy
Note
Hinweis

Falls Sie mit der Syntax beta_1, beta_0 = np.polyfit(X,y,1) nicht vertraut sind: Dies wird als Unpacking bezeichnet. Wenn ein Iterator (z. B. Liste, NumPy-Array oder pandas Series) zwei Elemente enthält, entspricht

a, b = my_iterator

dem folgenden:

a = my_iterator[0]
b = my_iterator[1]

Da die Rückgabe der Funktion polyfit() ein NumPy-Array mit zwei Werten ist, kann dies so verwendet werden.

Durchführung von Vorhersagen

Nun kann die Linie geplottet und neue Variablen mithilfe der Parameter vorhergesagt werden.

123
plt.scatter(X,y) # Build a scatter plot plt.plot(X, beta_0 + beta_1 * X, color='red') # Plot the line plt.show()
copy

Nachdem die Parameter bestimmt wurden, kann die Gleichung der linearen Regression zur Vorhersage neuer Werte verwendet werden.

123
X_new = np.array([65, 70, 75]) # Feature values of new instances y_pred = beta_0 + beta_1 * X_new # Predict the target print('Predicted y: ', y_pred)
copy

Es ist also ziemlich einfach, die Parameter der linearen Regression zu bestimmen. Einige Bibliotheken können jedoch auch zusätzliche Informationen bereitstellen.

question mark

Die Parameter der einfachen linearen Regression können mit der NumPy-Funktion gefunden werden:

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3
some-alt