Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Advanced Confidence Interval Calculation with Python | Confidence Interval
Learning Statistics with Python
course content

Contenido del Curso

Learning Statistics with Python

Learning Statistics with Python

1. Basic Concepts
2. Mean, Median and Mode with Python
3. Variance and Standard Deviation
4. Covariance vs Correlation
5. Confidence Interval
6. Statistical Testing

book
Advanced Confidence Interval Calculation with Python

If working with a small distribution (size ≤ 30) that approximates the normal distribution, use t-statistics.

How to calculate the confidence interval?

python
  • The t.interval() function from scipy.stats is used for the Student's T distribution.

  • 0.95 represents the confidence level (also known as the alpha parameter).

  • len(data) - 1 is the degrees of freedom ( df ), which is the sample size minus one.

  • loc represents the mean of the sample data.

  • sem represents the standard error of the mean .

Degrees of Freedom

Degrees of freedom refer to the number of independent information elements used to estimate a parameter.

The formula for degrees of freedom is N - 1, where N is the sample size.

You can modify the alpha parameter to observe how it affects the confidence interval.

1234567891011
import scipy.stats as st import numpy as np data = [104, 106, 106, 107, 107, 107, 108, 108, 108, 108, 108, 109, 109, 109, 110, 110, 111, 111, 112] # Calculate the confidence interval confidence = st.t.interval(0.95, len(data)-1, loc = np.mean(data), scale = st.sem(data)) print(confidence)
copy
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 6

Pregunte a AI

expand
ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

course content

Contenido del Curso

Learning Statistics with Python

Learning Statistics with Python

1. Basic Concepts
2. Mean, Median and Mode with Python
3. Variance and Standard Deviation
4. Covariance vs Correlation
5. Confidence Interval
6. Statistical Testing

book
Advanced Confidence Interval Calculation with Python

If working with a small distribution (size ≤ 30) that approximates the normal distribution, use t-statistics.

How to calculate the confidence interval?

python
  • The t.interval() function from scipy.stats is used for the Student's T distribution.

  • 0.95 represents the confidence level (also known as the alpha parameter).

  • len(data) - 1 is the degrees of freedom ( df ), which is the sample size minus one.

  • loc represents the mean of the sample data.

  • sem represents the standard error of the mean .

Degrees of Freedom

Degrees of freedom refer to the number of independent information elements used to estimate a parameter.

The formula for degrees of freedom is N - 1, where N is the sample size.

You can modify the alpha parameter to observe how it affects the confidence interval.

1234567891011
import scipy.stats as st import numpy as np data = [104, 106, 106, 107, 107, 107, 108, 108, 108, 108, 108, 109, 109, 109, 110, 110, 111, 111, 112] # Calculate the confidence interval confidence = st.t.interval(0.95, len(data)-1, loc = np.mean(data), scale = st.sem(data)) print(confidence)
copy
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 6
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt