Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Advanced Confidence Interval Calculation with Python | Confidence Interval
Learning Statistics with Python
course content

Kurssisisältö

Learning Statistics with Python

Learning Statistics with Python

1. Basic Concepts
2. Mean, Median and Mode with Python
3. Variance and Standard Deviation
4. Covariance vs Correlation
5. Confidence Interval
6. Statistical Testing

book
Advanced Confidence Interval Calculation with Python

If working with a small distribution (size ≤ 30) that approximates the normal distribution, use t-statistics.

How to calculate the confidence interval?

python
  • The t.interval() function from scipy.stats is used for the Student's T distribution.

  • 0.95 represents the confidence level (also known as the alpha parameter).

  • len(data) - 1 is the degrees of freedom (df), which is the sample size minus one.

  • loc represents the mean of the sample data.

  • sem represents the standard error of the mean.

Degrees of Freedom

Degrees of freedom refer to the number of independent information elements used to estimate a parameter.

The formula for degrees of freedom is N - 1, where N is the sample size.

You can modify the alpha parameter to observe how it affects the confidence interval.

1234567891011
import scipy.stats as st import numpy as np data = [104, 106, 106, 107, 107, 107, 108, 108, 108, 108, 108, 109, 109, 109, 110, 110, 111, 111, 112] # Calculate the confidence interval confidence = st.t.interval(0.95, len(data)-1, loc = np.mean(data), scale = st.sem(data)) print(confidence)
copy
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 6

Kysy tekoälyä

expand
ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

course content

Kurssisisältö

Learning Statistics with Python

Learning Statistics with Python

1. Basic Concepts
2. Mean, Median and Mode with Python
3. Variance and Standard Deviation
4. Covariance vs Correlation
5. Confidence Interval
6. Statistical Testing

book
Advanced Confidence Interval Calculation with Python

If working with a small distribution (size ≤ 30) that approximates the normal distribution, use t-statistics.

How to calculate the confidence interval?

python
  • The t.interval() function from scipy.stats is used for the Student's T distribution.

  • 0.95 represents the confidence level (also known as the alpha parameter).

  • len(data) - 1 is the degrees of freedom (df), which is the sample size minus one.

  • loc represents the mean of the sample data.

  • sem represents the standard error of the mean.

Degrees of Freedom

Degrees of freedom refer to the number of independent information elements used to estimate a parameter.

The formula for degrees of freedom is N - 1, where N is the sample size.

You can modify the alpha parameter to observe how it affects the confidence interval.

1234567891011
import scipy.stats as st import numpy as np data = [104, 106, 106, 107, 107, 107, 108, 108, 108, 108, 108, 109, 109, 109, 110, 110, 111, 111, 112] # Calculate the confidence interval confidence = st.t.interval(0.95, len(data)-1, loc = np.mean(data), scale = st.sem(data)) print(confidence)
copy
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 6
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt